CLASSICAL MECHANICS

Three Hours

Do all fours problems

One Text Allowed

- 1. Consider a particle of mass 1 moving in a Newtonian (or Coulomb) potential V(r) = -k/r, where k is a "coupling constant" characterizing the attractive potential
 - a) Show that the following vector (Runge-Lenz vector) is a constant of the motion:

$$\vec{C} = \vec{v} \times \vec{A} - k\vec{r}/r$$
,

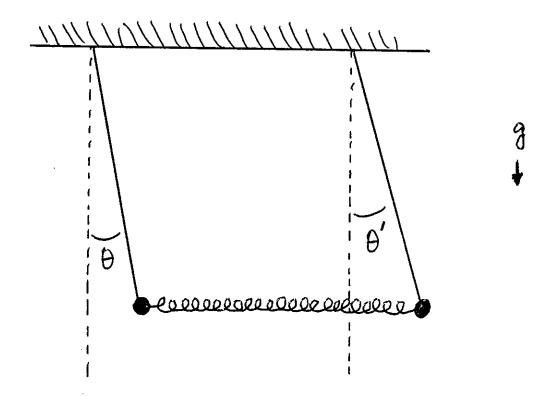
where \vec{r} is the position vector, \vec{v} is the velocity, and $\vec{A} = \vec{r} \times \vec{v}$ is the "vector area", constant by one of Kepler's laws.

- b) By cross-multiplying the vectors \vec{C} and \vec{A} show that the velocity vector traces out a circle and describe its relation to the vectors \vec{C} and $\vec{A} \times \vec{C}$.
- c) What are the implications of the conserved quantity \vec{C} in classical and in quantum mechanics?
- 2. Show that the angular momentum vector $\vec{\mathbf{J}}$ of a rigid body with a given ellipsoid of inertia rotating with angular velocity $\vec{\boldsymbol{\omega}}$ has the direction of the normal to the surface of the ellipsoid of inertia at the point where the rotation axis $\vec{\boldsymbol{\omega}}$ meets the surface.

Reminder: The ellipsoid of inertia is the locus of all angular momentum vectors of the body for which the kinetic energy

equals 1/2; or the ellipsoid described by the moment-ofinertia tensor, having semi-axes inversely proportional to the square roots of the principal moments of inertia.

- Consider a system consisting of two identical mathematical pendulums of length 1 and mass 1 placed in a uniform gravitational field with acceleration of gravity g = 1. The pendulums are connected by a weightless spring having equilibrium length equal to the distance between the points of suspension (see Figure), and spring constant k.
 - a) Choosing the angles θ and θ' as generalized coordinates write down the Lagrangian and the Hamiltonian of this system.
 - b) Considering the angles θ and θ' small (i.e., the angle equal to its sine) linearize the Lagrange equations by reducing the Lagrangian to the sum of two quadratic forms.
 - c) By simultaneous diagonalization of the corresponding matrices find the normal modes of the system, and for small values of k describe the vibrations qualitatively.



- 4. Use the Hamilton-Jacobi method to determine the motion of a symmetric two-dimensional harmonic oscillator:
 - a) Write down the Lagrangian and Hamiltonian in cartesian and in polar coordinates.
 - b) Write down the time-dependent Hamilton-Jacobi equation (in each of these coordinates systems).
 - c) Find a complete integral of the H-J equation (e.g., by separation of variables, or utilization of cyclic variables).
 - d) Use Jacobi's theorem to determine the trajectories in the plane and the motion along them.